rút gọn Bt
a)\(\frac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)
b)\(\frac{x-y}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(x\ne1,y\ne1,y>0\right)\)
\(A=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\left(x>0;x\ne1\right)\)
a, Rút gọn biểu thức
b, Tìm x để A=\(\frac{3}{2}\)
c, Tìm x thuộc Z để A thuộc Z
d, Tìm GTNN của A
Cho biểu thức \(E=\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}\div\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\left(x\ge0;x\ne1\right)\)
Tìm GTNN của E vs x > 1
cho biểu thức E=\(\frac{x+\sqrt{x}}{x-2\sqrt{x}+1}:\left(\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}+\frac{2-x}{x-\sqrt{x}}\right)\left(x\ge0,x\ne1\right)\)
a) rút gọn
b) timg gtrị của x để E>1
c) Tìm GTNN của E vs x>1
Rút gọn
\(C=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\) với \(x>0,x\ne1\)
- tìm GTNN của C
- tìm x để N= \(\dfrac{2\sqrt{x}}{C}\) nhận giá trị nguyên
\(B=\left(\frac{a\sqrt{a}+1}{\sqrt{a}+1}\right):\left(a-1\right)+\frac{2a+\sqrt{a}+1}{\sqrt{a}+1}-\frac{\sqrt{a}}{a-1}vớia>1\)
\(C=\left(\frac{X-1}{\sqrt{X}-1}+\frac{\sqrt{X^3}-1}{1-X}\right)-\left(\frac{\left(X-1\right)^2+\sqrt{X}}{\sqrt{X}+1}\right)vớiX>0,X\ne1\)
\(D=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}vớix>0,x\ne1\)
cho biểu thức: P=\(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
với \(x\ge0;x\ne1\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
c) tìm GTNN của P và giá trị tương ứng của x
cho E=\(\frac{x}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
tìm GTNN của E với x>1
Rút gọn các biểu thức sau:
a)\(\frac{\sqrt{108x^3}}{\sqrt{12x}}\left(x>0\right)\)
b)\(\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}\left(x< 0;y\ne0\right)\)
c)\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)
d) \(\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}\left(x\ge\right)\)
e)\(\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}\left(y>0;x\ne1;y\ne1\right)\)