\(B=5x^2+x+1\)
\(=>5\left(x^2+\frac{1}{5}x+\frac{1}{5}\right)\)
\(=>5\left(x^2+2.x.\frac{1}{10}+\frac{1}{100}+\frac{19}{100}\right)\)
\(=>5\left(\left(x+\frac{1}{10}\right)^2+\frac{19}{100}\right)\)
\(=>\frac{19}{20}+5\left(x+\frac{1}{10}\right)^2\ge\frac{19}{20}\)
MIN B = \(\frac{19}{20}< =>x+\frac{1}{10}=0=>x=\frac{-1}{10}\)
B = 5x2 + x - 1
\(=5\left(x^2+\frac{1}{5}x-\frac{1}{5}\right)=5\left[x^2+2.\frac{1}{10}.x+\left(\frac{1}{10}\right)^2-\left(\frac{1}{10}\right)^2-\frac{1}{5}\right]\)
\(=5\left[\left(x+\frac{1}{10}\right)^2-\frac{21}{100}\right]=5\left(x+\frac{1}{10}\right)^2-\frac{21}{20}\ge-\frac{21}{20}\)
Vậy MinB = -21/20 khi \(x+\frac{1}{10}=0\Rightarrow x=-\frac{1}{10}\)