<=>\(3\left(x^2+\dfrac{5}{3}x+\dfrac{4}{3}\right)< =>3\left(x^2+2.\dfrac{5}{6}x+\dfrac{25}{9}-\dfrac{13}{9}\right)\)
<=>\(3\left(x+\dfrac{5}{3}\right)^2-\dfrac{13}{3}\)
Vay GTNN =\(-\dfrac{13}{3}< =>x=-\dfrac{5}{3}\)
3x² + 5x + 4
= 3(x² + 5/3 x + 4/3)
= 3(x² + 2.5/6 x + 25/36 + 23/36)
= 3[(x + 5/6)² + 23/36]
= 3(x + 5/6)² + 23/12
Do (x + 5/6)² >= 0
Suy ra 3(x + 5/6)² >= 0
Suy ra 3(x + 5/6)² + 23/12 >= 23/12
Vậy GTNN của biểu thức đã cho là 23/12 khi x = -5/6
`A=3x^2+5x+4`
`A= 3.( x^2 + 5/6 . x +4/3)`
`A= 3.( x^2 + 2. 5/6 x + 48/36)`
`A= 3.( x^2+ 2 . 5/6 x + 25/36+ 23/36)`
`A=3.(x^2 + 2. 5/6 x + 25/36)+ 23/12`
`A= 3.(x+5/6)^2 + 23/12>=x`
dấu ''`=`'' xảy ra khi `x+5/6=0=>x=-5/6`
vậy \(MinA\)`=23/12<=>x=-5/6`