Ta có: \(\frac{x^2-2x+2016}{x^2}=1-\frac{2}{x}+\frac{2016}{x^2}=2016.\left(\frac{1}{x^2}-\frac{2}{2016.x}+\frac{1}{2016}\right)=2016.\left(\frac{1}{x^2}-2.\frac{1}{2016}.\frac{1}{x}+\frac{1}{2016^2}\right)+\frac{2015}{2016}=2016.\left(\frac{1}{x}-\frac{1}{2016}\right)^2+\frac{2015}{2016}\ge0\forall x\)
Dấu "=" xảy ra khi \(\frac{1}{x}-\frac{1}{2016}=0=>x=2016\)
Vậy min B=\(\frac{2015}{2016}\)<=> x=2016
b=\(\frac{x^2+2x+2016}{x^2}=\frac{\left(x+1\right)^2}{x^2}+\frac{2015}{x^2}\)
Vì 2015/x2>0
\(\Rightarrow\) \(\frac{\left(x+1\right)^2}{x^2}\)có GTNN
\(\Rightarrow\frac{\left(x^2+1\right)}{x^2}\ge0\)
tự làm tiếp
Xin lỗi nhé chỗ mk viết bị nhầm
\(2016.\left(\frac{1}{x}-\frac{1}{2016}\right)^2+\frac{2015}{2016}\ge\frac{2015}{2016}\forall x\)