Bài làm:
Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\left(\forall x,y\right)}\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\left(\forall x,y\right)\)
\(\Rightarrow B\ge2020\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy \(Min_B=2020\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Ta có: \(\left(3x+27\right)^{20}\ge0\forall x\)
\(\left(y-1\right)^2\ge0\forall y\)
=> \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\forall x;y\)
=> \(B\ge2020\)
Vậy GTNN của B là 2020 <=> x=-9, y=1
\(B=\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\)
\(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}\Rightarrow}\left(3x+27\right)^{20}+\left(y-1\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}3x+27=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy BMin = 2020 ,đạt được khi x = -9 và y = 1
\(\left(3x+27\right)^{20}\ge0\forall x;\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow\left(3x+27\right)^{2020}+\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(3x+27\right)^{2020}+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}3x+27=0\\y-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-9\\y=1\end{cases}}\)
Vậy Bmin = 2020 <=> x = -9 và y = 1
B=[(3x+27)10]2 +(y-1)2 +2020
Vì: \(\left[\left(3x+27\right)^{10}\right]^2\ge0\)
Và: \(\left(y-1\right)^2\ge0\)
\(\Rightarrow B\ge2020\)
\(\Rightarrow\)Min B=2020 dấu "=" xảy ra khi: \(\Leftrightarrow\hept{\begin{cases}x=-9\\y=1\end{cases}}\)
B= \(\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\)
Ta có: \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\\\left(y-1\right)^2\ge0\end{cases}\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020}\)
\(\Rightarrow Min\left(B\right)=2020\Leftrightarrow\left(3x+27\right)^{20}=0;\left(y-1\right)^2=0\)
\(\Leftrightarrow x=-9;y=1\)
Lưu ý: Min= GTNN
em cảm ơn mọi ngừi nhiều ạ
B=(3x+27)20+(y-1)2+2020
ta có \(\hept{\begin{cases}\left(3x+27\right)^{20}\ge0\forall x\inℤ\\\left(y-1\right)^2\ge0\forall y\inℤ\end{cases}}\)
\(\Rightarrow\left(3x+27\right)^{20}+\left(y-1\right)^2+2020\ge2020\)
\(\Rightarrow minB=2020\)
dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}\left(3x+27\right)^{20}=0\\\left(y-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+27=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}3x=-27\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-9\\y=1\end{cases}}}\)
vậy minB=2020 đạt được khi x=-9 và y=1