Cho x;y;z>0 và x+y+z\(\le\frac{3}{2}\)Tìm GTNN của A=x+y+z+\(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)
cho : x,y,z \(\ge\)0 và x + y + z \(\le\)3
chứng minh : \(\frac{x}{^{x^2+1}}+\frac{y}{y^2+1}+\frac{z}{z^2+z}\le\frac{3}{2}\le\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\)
cho \(0\le x;y;z\le1.\)CMR:\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
Cho \(0\le x,y,z\le1\). CMR:
\(\frac{x}{1+y+xz}+\frac{y}{1+z+xy}+\frac{z}{1+x+yz}\le\frac{3}{x+y+z}\)
cho các số dương x,y,z,t . Chứng minh: \(\frac{40}{3}\le\frac{x}{y+z+t}+\frac{y}{z+t+x}+\frac{z}{t+x+y}+\frac{t}{x+y+z}+\frac{y+z+t}{x}+\frac{z+t+x}{y}+\frac{t+x+y}{z}+\frac{x+y+z}{t}\)
1)Cho x+y+z=1
Tìm GTLN của \(\sqrt{x+y}+\sqrt{y+z}+\sqrt{z+x}\)
2) Cho \(x+y+z\le\frac{3}{2}\)
Tìm GTNN của \(\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\)
Ai đó giải dùm mình với nha
tìm GTNN của\(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng x,y,z là các số dương và x2+y2+z2 \(\le\)3
Giai rõ ràng nha các bạn
Cho x , y , z thỏa mãn \(1\le x,y,z\le2\) . Tìm giá trị lớn nhất của biểu thức : \(A=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho ba số dương x,y,z. Chứng minh rằng:
\(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2y}\le\frac{3}{4}\)