\(A=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{2}.\frac{1}{2x^2+4x+9}\)
Nhận xét: 2x2 + 4x + 9 = 2.(x2 + 2x + 1) + 7 = 2.(x + 1)2 + 7 > 7 với mọi x
=> \(\frac{1}{2x^2+4x+9}\le\frac{1}{7}\)=> \(-\frac{11}{2}.\frac{1}{2x^2+4x+9}\ge\frac{-11}{2}.\frac{1}{7}=-\frac{11}{14}\)
=> A > \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\)
Vậy A nhỏ nhất bằng -2/7 khi x+ 1 = 0 => x = -1
bạn đưa ra là
x2+2x-1=2x2+4x+9
rồi chuyển vế là xong
mình cũng không bik có đúng không
mik mới học lớp 7 thôi