Ta có: A=\(\frac{-2}{9x^2-6x+1+4}\) =\(\frac{-2}{\left(3x-1\right)^2+4}\)\(\ge\)\(\frac{-2}{4}\)=\(\frac{-1}{2}\)
Vậy giá trị nhỏ nhất của A là \(\frac{-1}{2}\)khi x=\(\frac{1}{3}\)
\(A=\frac{2}{6x-5-9x^2}\)
\(A=\frac{2}{-9x^2+6x-1-4}\)
\(A=\frac{2}{-\left(9x^2-6x+1\right)-4}\)
\(A=\frac{2}{-\left(3x-1\right)^2-4}\)
Vì \(-\left(3x-1\right)^2\le0\)
\(\Rightarrow-\left(3x-1\right)^2-4\le-4\)
\(\Rightarrow\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}\)
\(\Rightarrow A\ge\frac{-1}{2}\)
Vậy \(GTNN_A=\frac{-1}{2}\)tại \(x=\frac{1}{3}\)
\(A=\frac{2}{6x-5-9x^2}=\frac{-2}{9x^2-6x+5}=\frac{-2}{\left(3x-1\right)^2+4}\)
Ta thấy ( 3x - 1 )2 \(\ge0\)nên ( 3x - 1 )2 +4 \(\ge4\) do đó \(\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\) theo t/c \(a\ge b\)thì \(\frac{1}{a}\le\frac{1}{b}\)( với a , b cùng dấu ) .
Do đó \(\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\Rightarrow A\ge-\frac{1}{2}\)
minA = \(-\frac{1}{2}\)<=> 3x - 1 = 0 <=> x = \(\frac{1}{3}\)