\(A=\left(2x+1\right)^2+\left(x+2\right)^2=\left(4x^2+4x+1\right)+\left(x^2+4x+4\right)=5x^2+8x+5=5\left[x^2+2.x.\frac{8}{10}+\left(\frac{4}{5}\right)^2\right]-5.\left(\frac{4}{5}\right)^2+5=5\left(x+\frac{4}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\)
\(\Rightarrow MinA=\frac{9}{5}\Leftrightarrow x=-\frac{4}{5}\)