\(A=\frac{2x+1}{x^2+2}\)
Ta có: \(\hept{\begin{cases}2x+1\ge1\\x^2+2\ge2\end{cases}}\)
Để 2x+ 1 nhỏ nhất => 2x+ 1=1
x2+ 2 nhỏ nhất => x2+ 2= 2
\(\Rightarrow A=\frac{0+1}{0+1}=\frac{1}{2}=0,5\)
Vậy GTNN của A= 0,5
Ax^2+2A=2x+1
\(\Leftrightarrow Ax^2-2x+2A-1=1\)(*) A=0 <=>-2x-1=0=> luon co nghiem x
\(A\ne0\)(*) co nghiem can
delta(x)=1-A.(2a-1)>=0
\(\Leftrightarrow1-2a^2+a\ge0\Leftrightarrow2a^2-a-1\le0\Leftrightarrow\left(a-1\right)\left(a+\frac{1}{2}\right)\le0\)
\(-\frac{1}{2}\le A\le1\)
A = \(\frac{2x+1}{x^2+2}\)= \(\frac{x^2+2-x^2+2x-1}{x^2+2}\)= \(\frac{x^2+2}{x^2+2}-\frac{x^2-2x+1}{x^2+2}\)= \(1-\frac{\left(x-1\right)^2}{x^2+2}\)
Vì \(\frac{\left(x-1\right)^2}{x^2+2}\)\(\ge\) 0 với mọi x nên để A có GTLN \(\Rightarrow\) \(\frac{\left(x-1\right)^2}{x^2+2}\)=0 \(\Rightarrow\)\(\left(x-1\right)^2=0\Rightarrow x-1=0\Leftrightarrow x=1\)