Tìm GTNN vafd GTLN của biểu thức B= x+y+z; biết x, y, z là các số thực thỏa mãn điều kiện y2 + yz + z2 = 2 -\(\frac{3x^2}{2}\)
Tìm GTNN và GTLN của biểu thức B= x+y+z biết rằng x:y:z là các số thực thỏa mãn đk x^2+yz+z^2=1-3x^2/2
tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức B=x+y+z. Biết rằng x,y,z là các số thực thỏa mãn điều kiện y^2+yz+z^2=1007-(3x^2)/2
tìm gtln và gtnn của B=x+y+z biết x,y,z thỏa mãn y^2+yz+z^2=1-3x^2/2
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z
Cho các số thực dương thỏa mãn điều kiện:
x2+ y2+ z2< hoặc = 27
Tìm GTLN và GTNN của biểu thức:
x+ y+ z+ xy+ yz+ zx
Cho x,y,z là các số thỏa mãn điều kiện xy+2(yz+zx)=5. Tìm GTNN của biểu thức S=3(x2+y2)+4z2
Cho x,y,z thỏa mãn \(\frac{3x^2}{2}+y^2+z^2+yz=1\)Tìm GTNN và GTLN của x+y+z. Bài này đã có lâu nhưng em không hiểu cách làm. Mong mọi người hỗ trợ em ạ!
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)