ĐKXĐ : \(2-\sqrt{13}\le x\le2+\sqrt{13}\)
\(B=\sqrt{9+4x-x^2}=\sqrt{13-\left(x^2-4x+4\right)}=\sqrt{13-\left(x-2\right)^2}\le\sqrt{13}\) \(\forall x\)
" = " \(\Leftrightarrow x=2\) . Max B = \(\sqrt{13}\Leftrightarrow x=2\)
\(B=\sqrt{9+4x-x^2}\ge0\) . " = " \(\Leftrightarrow9+4x-x^2=0\Leftrightarrow x=2\pm\sqrt{13}\)
Min B = \(0\Leftrightarrow x=2\pm\sqrt{13}\)