1. Cho số nguyên dương x.
a, Tìm GTNN của biểu thức \(P=\sqrt[3]{10^x-2}+\sqrt{x^x+3}+\sqrt{\left(\pi^2+1\right)^{x-1}+3}\).
b, Tìm GTLN của biểu thức \(Q=\sqrt[5]{\left(6x^2+5\right)^{1-x}}+\sqrt[3]{3-2x^2}\).
c, Chứng minh rằng: \(\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\ge1\).
2. Cho tam giác OEF vuông tại O có OE = a, OF = b, EF = c thỏa mãn điều kiện a, b, c là các số dương. Chứng minh rằng biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) không nhận bất kì giá trị nguyên dương nào.
1/Tìm GTLN của biểu thức; \(P=x\sqrt{3-x^2}\left(0< x< \sqrt{3}\right)\)
2/ Tìm GTNN của \(P=\left(x^4+1\right)\left(y^4+1\right)\)biết \(x+y=\sqrt{10}\)
TÌM GTNN CỦA HÀM SỐ SAU:
a) y=\(\dfrac{x^2+x+2}{\sqrt{x^2+x+1}}\)
TÌM GTLN CỦA HÀM SỐ SAU:
b)y= \(x^2\sqrt{9-x^2}với-3\le x\le3\)
c)y=\(\left(1-x\right)^3\left(1+3x\right)với\dfrac{-1}{3}\le x\le1\)
a) tìm GTLN A= \(1-\sqrt{2x-x^2+1}\)
b) tìm GTNN B=\(\sqrt{x-2\sqrt{x-3}}\)
c) tìm GTNN C=\(\sqrt{\left(x-2017\right)^2+\sqrt{\left(x-1\right)^2}}\)
m.n help me vs nha......
Tìm GTNN của:
a)\(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
b)\(\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
Tìm GTLN của:
\(\dfrac{1}{\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}}\)
\(\left(\frac{x-3\sqrt{x}}{x-9}-1\right)\):\(\left(\frac{9-x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)rút gọn và tìm gtln
1,giải phương trình
\(\sqrt{\frac{\left(x-2\right)^4}{\left(3-x\right)^2}}\)+ \(\frac{x^2+1}{x-3}\)
2,tìm GTLN GTNN
A=\(\sqrt{x+3}\)+\(\sqrt{5-x}\)
Bài 1: Cho \(x,y>0\)thỏa mãn \(x^4+y^4=4\).Tìm GTNN \(E=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 2: Tìm GTNN và GTLN của\(A=\sqrt{3+x}+\sqrt{6-x}\left(-3\le x\le6\right)\)
Bài 3:Tìm GTLN của \(A=\sqrt{x+1}+\sqrt{y+1}\)biết\(\hept{\begin{cases}x,y\ge-1\\x+y=2\end{cases}}\)
Tìm GTLN và GTNN của B = \(\dfrac{x-\sqrt{x}}{\sqrt{x}-\left(x+1\right)}\)