\(\frac{x+5}{\sqrt{x}+1}=\frac{\left(x-1\right)+6}{\sqrt{x}+1}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)+6}{\sqrt{x}+1}=\sqrt{x}-1+\frac{6}{\sqrt{x}+1}\)
\(=\sqrt{x}+1+\frac{6}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right)\frac{6}{\sqrt{x}+1}}-2=2\sqrt{6}-2\)(Cauchy)