Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Ánh

Tìm gtln của bthuc A= -4x² + 5x - 3

A = - 4\(x\)2 + 5\(x\) - 3

A = -( 4\(x^2\) - 5\(x\) + \(\dfrac{25}{16}\))  - \(\dfrac{23}{16}\)

A = -( 2\(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\)

Vì ( 2\(x\) - \(\dfrac{5}{4}\))2 ≥ 0; ⇒ - ( 2\(x\) - \(\dfrac{5}{4}\))2 ≤ 0 ⇒ -( 2 \(x\) - \(\dfrac{5}{4}\))2 - \(\dfrac{23}{16}\) ≤ - \(\dfrac{23}{16}\)

A(max) = - \(\dfrac{23}{16}\) ⇔ 2\(x\) - \(\dfrac{5}{4}\) = 0 ⇔ \(x\) = \(\dfrac{5}{4}\): 2 = \(\dfrac{5}{8}\)

Kết luận giá trị lớn nhất của biểu thức là - \(\dfrac{23}{16}\) xáy ra khi \(x\) = \(\dfrac{5}{8}\)