D max thì \(\frac{6}{X^2+2}\)max
mà \(\frac{6}{X^2+2}\) thì X2+2 min (1)
Ta có X2 \(\ge0\)\(\forall X\)
=>X2+2\(\ge2\forall X\)(2)
Từ (1),(2)=> X2+2=2 <=> X =0
Thay X=0 ta có D = 3
Vậy D max =3 <=> X=0
Ta có: x2 + 2 \(\ge\)2 \(\forall\) x=> \(\frac{6}{x^2+2}\le\frac{6}{2}=3\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy MaxD = 3 khi x = 0