\(x^2+2=x^2+1+1\ge3\sqrt[3]{x^2}\)\(\Rightarrow\left(x^2+2\right)^3\ge\left(3\sqrt[3]{x^2}\right)^3=27x^2\)
\(\Rightarrow A=\frac{x^2}{\left(x^2+2\right)^3}\le\frac{x^2}{27x^2}=\frac{1}{27}\)
Vậy Max A = 1/27 khi \(x^2=1\)
\(x^2+2=x^2+1+1\ge3\sqrt[3]{x^2}\)\(\Rightarrow\left(x^2+2\right)^3\ge\left(3\sqrt[3]{x^2}\right)^3=27x^2\)
\(\Rightarrow A=\frac{x^2}{\left(x^2+2\right)^3}\le\frac{x^2}{27x^2}=\frac{1}{27}\)
Vậy Max A = 1/27 khi \(x^2=1\)
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
1. Tìm GTNN của Q =\(\frac{x+16}{\sqrt{x}+3}\)
2. Tìm GTNN của M =\(2x^2-8x+\sqrt{x^2-4x+5}+6\)
3. Cho biểu thức : A =\(\frac{x^2-x+2}{x^2}:\sqrt{\left(\frac{x^4+4}{x^2}\right)^2+6\left(\frac{x^2+2}{x}\right)^2-15}\)với x khác 0.
a) Rút gọn A
b) Tìm x để A có GTLN. Tìm GTLN đó.
Cho biểu thức A =\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
Tìm x để A đạt GTLN, tìm GTLN đó
Cho biểu thức: C=\(\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
a) Rút gọn C
b) Tìm x để C>0
c) Tìm GTLN của C
Cho x,y là các số thực. Tìm GTLN của biểu thức: \(P=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
Cho x, y là các số thực không âm. Tìm GTLN của biểu thức:
\(P=\frac{\left(x^2-y^2\right)\left(1-x^2y^2\right)}{\left(1+x^2\right)^2\left(1+y^2\right)^2}\)
x, y là 2 số không âm thay đổi. Tìm GTLN, GTNN của biểu thức:
\(F=\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x\right)^2\left(1+y\right)^2}\)