I. Cho cấp số nhân (un) với u3 = 3 và u4 = 10.
1. Tính u1 và q
2. Viết số hạng tổng quát của cấp số nhân
II. Tính giới hạn của các hàm số sau
1. \(\lim\limits_{ }\dfrac{-3n^2+2n-2022}{3n^2-2022}\)
2. \(\lim\limits_{x\rightarrow2}\dfrac{x^2-5x+6}{x-2}\)
III. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, O là giao điểm của AC và BD, cạnh bên SA = SB = SC = a
1. Chứng minh SO \(\perp\) (ABCD)
2. Tính khoảng cách từ S đến (ABCD)
Giải giúp mình nhé. Cảm ơn các bạn rất nhiều.
Tìm các giới hạn sau:
1/ \(\lim\limits_{x->-1}\) \(\dfrac{x^{2019}+1}{x^2+x}\)
2/ \(\lim\limits_{x->1}\) \(\dfrac{x+x^2+...+x^n-n}{x-1}\)
Tìm giới hạn của các hàm số sau lim x → 2 + x - 15 x + 2
Tìm các giới hạn sau:
\(\lim\limits_{x\rightarrow-\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow+\infty}\) \(\dfrac{\sqrt{x^6+2}}{3\text{x}^3-1}\)
\(\lim\limits_{x\rightarrow-\infty}\) \(\left(\sqrt{2\text{x}^2+1}+x\right)\)
\(\lim\limits_{x\rightarrow1}\) \(\dfrac{2\text{x}^3-5\text{x}-4}{\left(x+1\right)^2}\)
tính giới hạn của hàm số
lim x->0 : \(\frac{\left(\sqrt{1+x^2}+x\right)^n-\left(\sqrt{1+x^2}-x\right)^n}{x^2}\)
Tìm giới hạn của các hàm số sau : lim x → + ∞ x 2 - x + 1 - x
Tính các giới hạn sau:
a) $\underset{x\to 3}{\mathop{\lim }}\,\left( x+2 \right);$
b) $\underset{x\to +\infty }{\mathop{\lim }}\,\left( {{x}^{2}}-x+1 \right).$
Tìm giới hạn của các hàm số sau : lim x → - ∞ 4 x 2 - 3 x + 4 + 3 x x 2 + x + 1 - x
Tính giới hạn của các hàm số sau khi x → +∞ và khi x → -∞ f x = x 2 - 3 x x + 2