\(C=2x^2-x+1=2\left(x^2-x.\frac{1}{2}+\frac{1}{2}\right)=2\left(x^2-2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2+\frac{7}{16}\right)=2\left(x-\frac{1}{4}\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{1}{4}\right)\ge0\)
nên \(2\left(x-\frac{1}{4}\right)^2+\frac{7}{16}\ge\frac{7}{16}\)
Vậy \(Min_C=\frac{7}{16}\)khi \(x-\frac{1}{4}=0\Rightarrow x=\frac{1}{4}\)