A = x2 - 2x - 1 = x2 - 2x + 1 - 2 = (x-1)2 - 2 >= -2
=> Min A = -2 khi x = 1
B - x2 - 4x - 5 = x2 - 2.x.2 + 4 - 9 = (x-2)2 - 9 >= -9
=> Min B = -9 khi x = 2
\(A=x^2-2x-1=\left(x^2-2x+1\right)-2=\left(x^2-2.x.1+1^2\right)-2\)
\(=\left(x-1\right)^2-2\)
Vì \(\left(x-1\right)^2\ge0=>\left(x-1\right)^2-2\ge-2\)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MinA=-2 khi x=1
\(B=x^2-4x-5=\left(x^2-4x+4\right)-9=\left(x^2-2.x.2+2^2\right)-9\)
\(=\left(x-2\right)^2-9\ge-9\) (lập luận tương tự như trên)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MinB=-9 khi x=2