a) \(A=9x^2+5x+1\)
\(A=9x^2+5x+\frac{25}{36}+\frac{11}{36}\)
\(A=\left(3x+\frac{5}{6}\right)^2+\frac{11}{36}\)
Có: \(\left(3x+\frac{5}{6}\right)^2\ge0\)
\(\Rightarrow\left(3x+\frac{5}{6}\right)^2+\frac{11}{36}\ge\frac{11}{36}\)
Dấu = xảy ra khi: \(\left(3x+\frac{5}{6}\right)^2=0\Rightarrow3x+\frac{5}{6}=0\)
\(\Rightarrow x=-\frac{5}{18}\)
Vậy: \(Min_A=\frac{11}{36}\) tại \(x=-\frac{5}{18}\)
b) \(B=4x^2+12x-8\)
\(B=4x^2+12x+9-17\)
\(B=\left(2x+3\right)^2-17\)
Có: \(\left(2x+3\right)^2\ge0\)
\(\Rightarrow\left(2x+3\right)^2-17\ge-17\)
Dấu = xảy ra khi: \(\left(2x+3\right)^2=0\Rightarrow2x+3=0\)
\(\Rightarrow x=-\frac{3}{2}\)
Vậy: \(Min_B=-17\) tại \(x=-\frac{3}{2}\)