ta có: |a-b|=|b-a|
=> \(\left|x^2+x+3\right|+\left|x^2+x-6\right|=\left|x^2+x+3\right|+\left|6-x^2-x\right|\)
áp dụng bđt: |a|+|b|>= |a+b| ta có: \(\left|x^2+x+3\right|+\left|6-x^2-x\right|\ge\left|x^2+x+3+6-x^2-x\right|=\left|9\right|=9\Rightarrow Min=9\Leftrightarrow x=0\)