A = 6x2−4x+4x26x2−4x+4x2= 2x2+4x2−4x+1x22x2+4x2−4x+1x2= 2+(x−2)2x22+(x−2)2x2
Đặt B = (x−2)2x2(x−2)2x2
Do x khác 0 =>(x−2)2>=0(x−2)2>=0và x2x2>0>0
Cho nên giá trị nhỏ nhất của phân thức A đã nêu là giá trị nhỏ nhất của phân thức B.
=> Min B = 0x20x2= 0
=> Min A = 2 + 0 = 2
Dấu "=" xảy ra khi và chỉ khi (x-2)2 = 0
=> x-2 = 0
=> x = 2