Ta có: \(xy+yz+zx\le x^2+y^2+z^2\le3\)
\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{1+xy+1+yz+1+zx}=\frac{9}{3+\left(xy+yz+zx\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Ta có: \(xy+yz+zx\le x^2+y^2+z^2\le3\)
\(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+zx}\ge\frac{9}{1+xy+1+yz+1+zx}=\frac{9}{3+\left(xy+yz+zx\right)}\ge\frac{9}{3+3}=\frac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
cho x;y;z>0 thỏa mãn x^2+y^2+z^2<=3
tim gia tri nho nhat cua \(\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\)
tim gia tri lon nhat cua \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
cho x,y,z>0 tm xy+xz+yz=1. tim gtnn cua
S=\(\frac{1}{4x^2-yz+2}+\frac{1}{4y^2-xz+2}+\frac{1}{4z^2-xy+2}\)
1 cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3 tim gia tri lon nhat cua x^2+y^2+z^2
2 cho a;b;c duong c/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
3 tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1
4 cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
5 tim gia tri lon nhat cua \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
6 phan tich da thuc thanh nhan tu \(y-5x\sqrt{y}+6x^2\)
7 cho x;y;z>0 xy+yz+xz=1 tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
8 cho a;b;c >0 c/m \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
cho x;y;z duong thoa man xyz=1
tim gia tri nho nhat cua \(\frac{1}{x^2\left(y+z\right)}+\frac{1}{y^2\left(x+z\right)}+\frac{1}{z^2\left(x+y\right)}\)
cho x,y la cac so duong thay doi va thoa man dieu kien x+y\(\le\)1. tim gia tri nho nhat cua bieu thuc M=\(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
cho $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0,x,y,z\ne 0khido\frac{xy}{z^2}+\frac{xz}{y^2}+\frac{yz}{x^2}=?$
Cho x,y la cac so thuc duong. Tim gia tri nho nhat cua bieu thuc:
\(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)
\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}>=3 \)
biết x,y,z>0 và x+y+z=xy+xz+yz=6xyz