Tìm giá trị nhỏ nhất
\(A=\sqrt{21+4a-a^2}-\sqrt{10+3a-a^2}\)
Cho biểu thức
A =\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right).\dfrac{a-4}{\sqrt{4a}}\) với a ≥0,a≠4
a) Rút gọn biểu thức A
b) Tìm giá trị của a để A -2 < 0
c) Tìm giá trị của a nguyên để biểu thức \(\dfrac{4}{A+1}\)
1 . )
Cho 3 số a,b,c dương. Tìm giá trị lớn nhất của biểu thức
\(P=\frac{a}{2a+b+c}+\frac{b}{2b+c+a}+\frac{c}{2c+a+b}\)
2
cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)
Cho a dương. Tìm giá trị nhỏ nhất của biểu thức P=4a2-3a+\(\frac{1}{4a}\)+2018
Cho biểu thức A= \(\frac{10}{x-3\sqrt{x}-4}+\frac{1}{1+\sqrt{x}}-\frac{2}{\sqrt{x}-4}\)
a/ Rút gọn biểu thức A?
b/ Tìm giá trị của x để A = \(-\frac{1}{2}\)
c/ Tìm giá trị nhỏ nhất của A?
Giúp mình bài này với ạ :))
Cho các số thực không âm a,b,c thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
Tìm giá trị nhỏ nhất của biểu thức P = \(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3a^2+2ca+3a^2}\)
Cho a,b,c là các số thực dương có tổng bằng 1.Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{1}{\sqrt{3a^2+4ab+b^2}}+\frac{1}{\sqrt{3b^2+4bc+c^2}}+\frac{1}{\sqrt{3c^2+4ca+a^2}}\)
Cho \(A=\sqrt{x}+\dfrac{2}{\sqrt{x}}\) Tìm tất cả giá trị của x để biểu thức A đạt giá trị nhỏ nhất
Cho biểu thức: P = \(\frac{5}{\sqrt{a}+1}-\frac{2}{\sqrt{a}-1}-\frac{2\sqrt{a}-6}{a-1}\left(a\ge0,a\ne1\right)\)
a) Rút gọn P
b) Với giá trị nào của a thì biểu thức Q = (a+15).P đạt giá trị nhỏ nhất. Hãy tìm giá trị nhỏ nhất đó.