Câu 25 ( mức 3 ) : Cho x,y,z thỏa mãn 0 < x,y,z < 1 và x+y+z=2 . Tìm giá trị nhỏ nhất của biểu thức :
A = \(\frac{\left(x-1\right)^2}{z}\) + \(\frac{\left(y-1\right)^2}{x}\) + \(\frac{\left(z-1\right)^2}{y}\)
Giúp mik
Bài 1: Cho P=\(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)(x>0; x\(\ne\)1)
a,Rút gọn P
b, Tìm các giá trị của x để P> \(\frac{1}{2}\)
Bài 2:Cho K=\(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)(với a>0; a\(\ne\)1)
a, Rút gọn K
b,Tính giá trị của biểu thức K khi a=3+\(2\sqrt{2}\)
Cho hai \(\overrightarrow{u}\)và \(\overrightarrow{v}\)có giá vuông góc với nhau. dựng vectơ
\(\overrightarrow{w}=\left(\frac{\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|}{\left|\overrightarrow{u}+\overrightarrow{v}\right|}-1\right)\left(\overrightarrow{u}+\overrightarrow{v}\right)-\left(\frac{\left|\overrightarrow{u}\right|}{\left|\overrightarrow{u}\right|+\left|\overrightarrow{u}+\overrightarrow{v}\right|}\overrightarrow{v}+\frac{\left|\overrightarrow{v}\right|}{\left|\overrightarrow{v}\right|+\left|\overrightarrow{u}+\overrightarrow{v}\right|}\overrightarrow{u}\right)\)
chứng minh vectơ \(\overrightarrow{w}\)có giá vuông góc với giá của vectơ \(\overrightarrow{u}+\overrightarrow{v}\)
MÌNH ĐANG CẦN NGAY TRONG TỐI NAY MONG CÁC BẠN CÓ THỂ GIÚP MÌNH
CẢM ƠN CÁC BẠN RẤT NHIỀU
Cho a,b >0 và a2 +b2 =1 . TÌm giá trị nhỏ nhất của biểu thức
\(T=\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)
tìm giá trị nhỏ nhất của biểu thucM ,biết
M=\(\left(1+a\right)\left(1+\frac{1}{b}\right)+\left(1+b\right)\left(1+\frac{1}{a}\right)\)) với a>0,b>0 va \(^{a^{2+}b^{2=1}}\)
Cho hai số x, y > 0 và x + y = 1. Tìm giá trị nhỏ nhất của biểu thức:
\(B=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
cho a,b>0 và a.b=1. Tìm giá trị nhỏ nhất của biểu thức
\(A=\left(a+b+1\right)\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=\frac{3}{2}\Rightarrow2\left(x+y\right)=3xy\)
\(x^2+y^2=5\Leftrightarrow\left(x+y\right)^2-2xy=5\)
Đặt x+y=u; xy=v, ta có hệ
\(\int^{2\left(x+y\right)-3xy=0}_{\left(x+y\right)^2-2xy=5}\Leftrightarrow\int^{2u-3v=0}_{u^2-2v=5}\Leftrightarrow u=3;v=2\)hoặc \(u=-\frac{5}{3};v=-\frac{10}{9}\)
đến đây dùng viet, x và y là nghiệm của 2 phương trình \(X^2-3X+2=0\) hoặc \(X^2+\frac{5}{3}X-\frac{10}{9}=0\). Giải ra được nghiệm (x;y) là \(\left(1;2\right),\left(2;1\right),\left(\frac{-5+\sqrt{65}}{6};\frac{-5-\sqrt{65}}{6}\right),\left(\frac{-5-\sqrt{65}}{6};\frac{-5+\sqrt{65}}{6}\right)\)
Cho a,b,c > 0 thoả mãn :
ab+bc+ca=2abc
Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}\)