a) \(\left|3,4-x\right|\ge0\forall x\in R\)
\(\Rightarrow1,7+\left|3,4-x\right|\ge1,7\forall x\in R\)
\(\Rightarrow A\ge1,7\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\left|3,4-x\right|=0\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)
Vậy GTNN của A = 1,7 \(\Leftrightarrow x=1,7\)
b) \(\left(4x-3\right)^2\ge0\forall x\in R\)
\(\Rightarrow B\ge0\forall x\in R\)
Đẳng thức xảy ra \(\Leftrightarrow\left(4x-3\right)^2=0\Leftrightarrow4x-3=0\Leftrightarrow4x=3\Leftrightarrow x=0,75\)
Vậy GTNN của B = 0 \(\Leftrightarrow x=0,75\)
a/ Gọi Amin là GTNN của A.
Vì \(\left|3,4-x\right|\ge0\)=> \(1,7+\left|3,4-x\right|\ge1,7\). Dấu "=" xảy ra khi và chỉ khi \(\left|3,4-x\right|=0\).
=> \(3,4-x=0\)=> \(x=3,4\).
Vậy Amin = 1,7 khi x = 3,4.