Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aki

Tìm giá trị nhỏ nhất của biểu thức : D = x^2 + 4y^2 - 2xy -6y-10(x-y) +32

Trí Tiên亗
5 tháng 2 2020 lúc 21:44

\(D=x^2+4y^2-2xy-6y-10x+10y+32\)

\(=x^2-2.x\left(y+5\right)+\left(y+5\right)^2-\left(y+5\right)^2+4y^2+4y+32\)

\(=\left(x-y-5\right)^2-y^2-10y-25+4y^2+4y+32\)

\(=\left(x-y-5\right)^2+3y^2-6y+7\)

\(=\left(x-y-5\right)^2+3\left(y^2-2y+1\right)+4\)

\(=\left(x-y-5\right)^2+3\left(y-1\right)^2+4\)

Ta thấy : \(\left(x-y-5\right)^2+3\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow D\ge4\forall x,y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-y-5=0\\y-1=0\end{cases}}\)  \(\Leftrightarrow\hept{\begin{cases}x=6\\y=1\end{cases}}\)

Vậy : min \(D=4\) tại \(x=6,y=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lan Phạm
Xem chi tiết
White Silver
Xem chi tiết
Chau, Bao Pham
Xem chi tiết
buitunganhlpk
Xem chi tiết
Nguyễn Duy Tùng Lâm
Xem chi tiết
Chung Nguyễn Thành
Xem chi tiết
Bùi Huyền Trang
Xem chi tiết
Vũ Huy Đô
Xem chi tiết
Kim Trân Ni
Xem chi tiết