Answer:
Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu '' = '' xảy ra khi: \(a.b\ge0\)
\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)
Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)
Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)
Bạn Yen Nhi: đề ghi là |x+1| nhé
Mình làm lại bài nhé. (Bài trước nhầm đề)
Answer:
\(A=\left|x+1\right|+\left|x+2020\right|=\left|x+1\right|+\left|-x-2020\right|\)
Ta áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được
\(A\ge\left|x+1-x-2020\right|=\left|-2019\right|=2019\)
Dấu '' = '' xảy ra khi: \(\left(x+1\right).\left(-x-2020\right)\ge0\)
Trường hợp 1: \(\hept{\begin{cases}x+1\ge0\\-x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le-2020\end{cases}\Rightarrow-1\le x\le-2020\left(\text{Loại}\right)}\)
Trường hợp 2: \(\hept{\begin{cases}x+1\le0\\-x-2020\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge-2020\end{cases}}\Rightarrow-2020\le x\le-1\)
Vậy giá trị nhỏ nhất của biểu thức \(A=2019\) khi \(-2020\le x\le-1\)