Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Tạ Ngọc Diễm
Tìm giá trị nhỏ nhất của biểu thức A=|x+1|+|x+2020|
Yen Nhi
20 tháng 11 2021 lúc 22:20

Answer:

Ta áp dụng: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu '' = '' xảy ra khi: \(a.b\ge0\)

\(\Rightarrow A=\left|1-x\right|+\left|x+2020\right|\ge\left|1-x+x+2020\right|=2021\)

Dấu '' = '' xảy ra khi: \(\left(1-x\right).\left(x+2020\right)\ge0\Rightarrow-2020\le x\le1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2021\) khi \(-2020\le x\le1\)

Khách vãng lai đã xóa
lê đức anh
20 tháng 11 2021 lúc 22:33

Bạn Yen Nhi: đề ghi là |x+1| nhé

Khách vãng lai đã xóa
Yen Nhi
21 tháng 11 2021 lúc 11:00

Mình làm lại bài nhé. (Bài trước nhầm đề)

Answer:

\(A=\left|x+1\right|+\left|x+2020\right|=\left|x+1\right|+\left|-x-2020\right|\)

Ta áp dụng bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta được

\(A\ge\left|x+1-x-2020\right|=\left|-2019\right|=2019\)

Dấu '' = '' xảy ra khi: \(\left(x+1\right).\left(-x-2020\right)\ge0\)

Trường hợp 1: \(\hept{\begin{cases}x+1\ge0\\-x-2020\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-1\\x\le-2020\end{cases}\Rightarrow-1\le x\le-2020\left(\text{Loại}\right)}\) 

Trường hợp 2: \(\hept{\begin{cases}x+1\le0\\-x-2020\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le-1\\x\ge-2020\end{cases}}\Rightarrow-2020\le x\le-1\)

Vậy giá trị nhỏ nhất của biểu thức \(A=2019\) khi \(-2020\le x\le-1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Lê Hoàng Lam Phương
Xem chi tiết
Trần Lê Đức Anh
Xem chi tiết
KaiZツ
Xem chi tiết
Vũ Thị Phương Anh
Xem chi tiết
Vũ Thị Phương Anh
Xem chi tiết
Đặng Thái Vân
Xem chi tiết
Kim Mingyu
Xem chi tiết
Nguyen Ngo
Xem chi tiết
Vũ Ngọc Diệp
Xem chi tiết