A=|x-1|+|x-2017|
=>A=|x-1|+|2017-x|
Áp dụng bất đẳng thức:|a|+|b| \(\ge\) |a+b|,dấu "=" xảy ra <=> ab \(\ge\) 0
Ta có: A=|x-1|+|2017-x| \(\ge\) |x-1+2017-x|=2016
=>AMin=2016
Dấu "=" xảy ra <=> (x-1)(2017-x) \(\ge\) 0
<=>1 \(\le\)x \(\le\) 2017
Vậy......................