Ta có \(A=\frac{x^2-4x+1}{x^2}=\frac{x^2}{x^2}-\frac{4x}{x^2}+\frac{1}{x^2}=1-\frac{4}{x}+\frac{1}{x^2}\)
Đặt \(\frac{1}{x}=y\) , ta có
\(A=1-\frac{4}{\frac{1}{y}}+\frac{1}{\frac{1}{y^2}}=1-4y+y^2=y^2-2y.2+4-3\)
\(A=\left(y-2\right)^2-3\)
Vì \(\left(y-2\right)^2\ge0\) dấu = khi \(y-2=0\Leftrightarrow y=2\) mà \(y=\frac{1}{x}\Rightarrow\frac{1}{x}=2\Rightarrow x=\frac{1}{2}\)
\(\Rightarrow\left(y-2\right)^2-3\ge-3\) dấu = khi \(x=\frac{1}{2}\)
Vậy \(minA=-3\) khi \(x=\frac{1}{2}\)