Điều kiện \(0\le x\le1\)
\(A=2014\sqrt{x}+2015\sqrt{1-x}\)
\(=2014\left(\sqrt{x}+\sqrt{1-x}\right)+\sqrt{1-x}\)
Ta có:
\(\sqrt{x}+\sqrt{1-x}\ge\sqrt{x+1-x}=1\)
Và \(x\le1\Leftrightarrow1-x\ge0\)
Từ đây ta có
\(A\ge2014.1+0=2014\)
Vậy GTNN của A = 2014 đạt được khi x = 1