Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Edogawa Conan

tìm giá trị nhỏ nhất của biểu thức A = a4 - 2a3 + 3a- 4a + 5 

Lê Anh Tú
5 tháng 2 2017 lúc 9:50

A = a^4 - 2a^3 +a^2 + 2a^2 - 4a + 2 +3 
A = ( a^4 - 2a^3 + a^2) + 2 ( a^2 - 2a +1) +3 
A = ( a^2 - a)^2 + 2 ( a-1)^2 + 3 Có ( a^2 - a )^2 >= 0 với mọi giá trị của a 
và ( a-1)^2 >=0 với mọi giá trị của a 
Nên suy ra ta có => (a^2 - a)^2 + 2(a - 1)^2 + 3 >= 3 
Dấu " = " xảy ra <=> a -1 =0 
<=> a = 1 
Vậy B min = 3 <=> a =1 

thien ty tfboys
5 tháng 2 2017 lúc 10:33

Ta có : A=a4-2a3+3a2-4a+5

=a4-2a3+a2+2a2-4a+2+3

=(a2-a)2+2(a-1)2+3

Mà : \(\left(a^2-a\right)^2+2\left(a-1\right)^2\ge0\)

\(\Rightarrow\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)

Vậy MinA=3

Dấu "=" xảy ra khi a-1=0

                       \(\Rightarrow\) a=1

Trịnh Quang
4 tháng 4 2017 lúc 21:03

a = 1 mình làm được đấy !


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
huong nguyen
Xem chi tiết
Hà Văn Minh Hiếu
Xem chi tiết
Hà Văn Minh Hiếu
Xem chi tiết
minh anh
Xem chi tiết
Edogawa Conan
Xem chi tiết
Feliks Zemdegs
Xem chi tiết
Xuân Hoàng Nguyễn
Xem chi tiết
Lê Hoàng Thu
Xem chi tiết