A = a^4 - 2a^3 +a^2 + 2a^2 - 4a + 2 +3
A = ( a^4 - 2a^3 + a^2) + 2 ( a^2 - 2a +1) +3
A = ( a^2 - a)^2 + 2 ( a-1)^2 + 3 Có ( a^2 - a )^2 >= 0 với mọi giá trị của a
và ( a-1)^2 >=0 với mọi giá trị của a
Nên suy ra ta có => (a^2 - a)^2 + 2(a - 1)^2 + 3 >= 3
Dấu " = " xảy ra <=> a -1 =0
<=> a = 1
Vậy B min = 3 <=> a =1
Ta có : A=a4-2a3+3a2-4a+5
=a4-2a3+a2+2a2-4a+2+3
=(a2-a)2+2(a-1)2+3
Mà : \(\left(a^2-a\right)^2+2\left(a-1\right)^2\ge0\)
\(\Rightarrow\left(a^2-a\right)^2+2\left(a-1\right)^2+3\ge3\)
Vậy MinA=3
Dấu "=" xảy ra khi a-1=0
\(\Rightarrow\) a=1