A(x) = x2 - 2x + 2 = x2 - 2x + 1 + 1 = (x - 1)2 + 1
Ta có (x - 1)2 > 0 \(\Rightarrow\) (x - 1)2 + 1 > 1
Vậy min A = 1 \(\Leftrightarrow\) x = 1
B(x) = x2 + x + 1 = x2 + 2.\(\frac{1}{2}\).x + \(\frac{1}{4}+\frac{3}{4}\)= \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Ta có \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy min B = \(\frac{3}{4}\) \(\Leftrightarrow x=-\frac{1}{2}\)