Tìm giá trị lớn nhất của biểu thức:
Q=-/x+5/+3
lưu ý: / là giá trị tuyệt đối nhá
mơn trước ạ
Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.
Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:
x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0
Câu 16. Tìm giá trị lớn nhất của biểu thức:
Câu 17. So sánh các số thực sau (không dùng máy tính):
Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3
Câu 19. Giải phương trình: .
Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.
Câu 21. Cho .
Hãy so sánh S và .
Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.
Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:
Câu 24. Chứng minh rằng các số sau là số vô tỉ:
Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?
Câu 26. Cho các số x và y khác 0. Chứng minh rằng:
Câu 27. Cho các số x, y, z dương. Chứng minh rằng:
Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.
Câu 29. Chứng minh các bất đẳng thức:
a) (a + b)2 ≤ 2(a2 + b2)
b) (a + b + c)2 ≤ 3(a2 + b2 + c2)
c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).
Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.
Câu 2 (3,0 điểm) a) Cho hàm số y f x x b 4 . Biết 1 1, 2 f tìm giá trị của b. b) Tìm số thực x biết: 0,25 0,75 3,5 x . c) Cho x và y là hai đại lượng tỉ lệ thuận. Biết y1, y2 là hai giá trị khác nhau của y tương ứng với các giá trị x1, x2 của x. Tính x1 biết y1 = 10, 2 y 15 và 2 x 8 .
Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức
P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
Tìm giá trị nhỏ nhất của biểu thức:
\(B=\left|x-1\right|+\left|x-2\right|+....+\left|x-100\right|\)
Tìm giá trị nhỏ nhất của
A=|5x + 3| + |4x - 5| + 5
Cho x,y là các số thực dương thỏa mãn \(xy+1\le x\). Tìm giá trị nhỏ nhất của biểu thức
\(Q=\frac{x+y}{\sqrt{3x^2-xy+y^2}}.\)
Tìm giá trị nhỏ nhất của:
A=x2 -2x+\(\frac{1}{x-1}\)với x>1
B=x2+\(\frac{1}{x^3}\) với x>0
Cho x;y là các số nguyên dương sao cho : \(A=\frac{x^4+y^4}{15}\)cũng là số nguyên dương . Chứng minh x;y đều chia hết cho 3 và 5. từ đó tính giá trị nhỏ nhất của biểu thức A