\(A=\frac{2x-3}{3x+2}=\frac{1}{3}.\frac{3\left(2x-3\right)}{3x+2}=\frac{1}{3}.\frac{6x-9}{3x+2}=\frac{1}{3}.\frac{6x+4-13}{3x+2}=\frac{2}{3}-\frac{13}{3\left(3x+2\right)}\)
\(A\)đạt giá trị lớn nhất khi \(\frac{13}{3\left(3x+2\right)}\)đạt giá trị nhỏ nhất suy ra \(3\left(3x+2\right)\)đạt giá trị nguyên âm lớn nhất (do \(x\)nguyên)
- \(3\left(3x+2\right)=-1\Leftrightarrow x=-\frac{7}{9}\)(loại)
- \(3\left(3x+2\right)=-2\Leftrightarrow x=-\frac{8}{9}\)(loại)
- \(3\left(3x+2\right)=-3\Leftrightarrow x=-1\)(thỏa mãn)
Vậy \(x=-1\)thì \(A\)đạt giá trị lớn nhất.
\(A\)đạt giá trị nhỏ nhất khi \(\frac{13}{3\left(3x+2\right)}\)đạt giá trị lớn nhất suy ra \(3\left(3x+2\right)\)đạt giá trị nguyên dương nhỏ nhất (do \(x\)nguyên)
Xét tương tự như trên thu được \(x=0\)thì \(A\)đạt giá trị nhỏ nhất.