\(a+2b=1\Leftrightarrow a=1-2b\\ \Leftrightarrow ab=b\left(1-2b\right)=b-2b^2=-2\left(b^2-2\cdot\dfrac{1}{4}\cdot b+\dfrac{1}{16}\right)+\dfrac{1}{8}\\ =-2\left(b-\dfrac{1}{4}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\)
Dấu \("="\Leftrightarrow b=\dfrac{1}{4}\Leftrightarrow a=1-\dfrac{1}{2}=\dfrac{1}{2}\)
\(a+2b=1\Rightarrow a=1-2b\)
\(P=ab=b\left(1-2b\right)=-2b^2+b=-2\left(b-\dfrac{1}{4}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\)
\(P_{max}=\dfrac{1}{8}\) khi \(\left(a;b\right)=\left(\dfrac{1}{4};\dfrac{1}{2}\right)\)