\(\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\)
DO a và b là các chữ số =>\(\hept{\begin{cases}0< a< ho\text{ặc}=9\\0< ho\text{ặc}=b< ho\text{ặc=9}\end{cases}}\)
Để p/s cho lớn nhất =>b lớn nhất=9 và a nhỏ nhất=1
Đặt \(A=\frac{10a+b}{a+b}\) ta có :
\(A=\frac{a+b+9a}{a+b}=\frac{a+b}{a+b}+\frac{9a}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{1+\frac{b}{a}}\) ( bước cuối làm hơi tắt )
Để \(A\) đạt GTLN thì \(\frac{9}{1+\frac{b}{a}}\) phải đạt GTLN hay \(1+\frac{b}{a}>0\) và đạt GTNN \(\Rightarrow\)\(\frac{b}{a}>-1\)
Lại có : \(\frac{a}{b}>0\) \(\left(a,b\ne0\right)\) và đạt GTNN
Mà \(1\le a,b\le9\) nên \(a=1\) và \(b=9\)
Suy ra :
\(A=1+\frac{9a}{a+b}=1+\frac{9.1}{1+9}=1+\frac{9}{10}=\frac{10}{10}+\frac{9}{10}=\frac{19}{10}\)
Vậy GTLN của A là \(\frac{19}{10}\) khi \(a=1\) và \(b=9\)
Chúc bạn học tốt ~