Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Clary

Tìm giá trị lớn nhất của biểu thức: \(\frac{x+2003}{\left(x+2004\right)^2}\)

Kiệt Nguyễn
21 tháng 2 2020 lúc 8:13

Gọi biểu thức đó là \(K=\frac{x+2003}{\left(x+2004\right)^2}\)

Đặt \(x+2003=k_0\)

Lúc đó \(K=\frac{k_0}{\left(k_0+1\right)^2}=\frac{\left(k_0^2+2k_0+1\right)-\left(k_0^2+k_0+1\right)}{k_0^2+2k_0+1}\)

\(=1-\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)

Để K đạt GTLN thì \(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}\)đạt GTNN

Đặt \(k_1=k_0+1\Rightarrow k_0=k_1-1\)

\(\frac{k_0^2+k_0+1}{k_0^2+2k_0+1}=\frac{\left(k_1-1\right)^2+\left(k_1-1\right)+1}{k_1^2}\)

\(=\frac{k_1^2-k_1+1}{k_1^2}=\frac{1}{k_1^2}-\frac{1}{k_1}+1\)

Đặt \(\frac{1}{k_1}=k_2\)thì có \(K=k_2^2-k_2+1=\left(k_2-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

(Dấu "=" xảy ra khi \(k_2=\frac{1}{2}\Rightarrow k_1=2\Rightarrow k_0=1\Rightarrow x=-2002\))

Vậy \(K_{max}=\frac{1}{4}\Leftrightarrow x=-2002\)

Khách vãng lai đã xóa

 Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Minh Ánh
Xem chi tiết
Nhật Hòa
Xem chi tiết
Lê Cao Phong
Xem chi tiết
Mai Huyền
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
Nguyễn Thị Ngọc Mai
Xem chi tiết
Trần Minh Thành
Xem chi tiết
Ái Kiều
Xem chi tiết
Hoàng Phúc
Xem chi tiết