\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)
tìm tiềm kiện để (1) có nghiệm
a=0=>có nghiệm x=3/4 với a khác không
\(2^2-a\left(a-3\right)\ge0\)
\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)
GTLN A=\(4\)
A=(3-4x)/(x^2+1)
ta có 4-A=4-(3-4x)/(x^2+1)
=[4(x^2+1)-3+4x]/(x^2+1)
=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)
=(2x+1)^2/(x^2+1) >= 0 với mọi x
=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x
Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2