\(A=-\left(4x^2-4xy+y^2\right)-\left(y^2-2y+1\right)+4\)
\(A=-\left(2x-y\right)^2-\left(y-1\right)^2+4\)
Do \(\left\{{}\begin{matrix}-\left(2x-y\right)^2\le0\\-\left(y-1\right)^2\le0\end{matrix}\right.\) ;\(\forall x;y\)
\(\Rightarrow A\le4;\forall x;y\)
Vậy \(A_{max}=4\) khi \(x=\dfrac{1}{2};y=1\)