Cho x,y,z lớn hơn hoặc bằng 0, 2x+7y=2014 và 3x+5z=3031. Tìm giá trị lớn nhất của biểu thức A= x+y+z
Giá trị lớn nhất của biểu thức B = xyz(x+y)(y+z)(z+x) với x,y,z >=0 ; x+y+z=1 là k. Khi đó k =
Với x, y, z là các số thực dương hãy tìm giá trị lớn nhất của biểu thức M=xyz/(x+y)(y+z)(z+x)
cho x, y, z là các số không âm thỏa mãn x+y+z=1
a) Chứng minh rằng \(xyz\ge\left(x+y-z\right)\left(y+z-x\right)\left(z+x-y\right)\)
b) Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=x^2+y^2+z^2+\frac{9}{2}xyz.\)
Cho x;y;z>0 và x+y+z=xyz. Tìm giá trị lớn nhất của :
\(P=\frac{1}{x^2+2yz}+\frac{1}{y^2+2xz}+\frac{1}{z^2+2xy}\)
cho ba số thực không âm x,y,z thỏa mãn xyz=1 . tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức M=\(\frac{x\sqrt{x}}{x+\sqrt{xy}+y}+\frac{y\sqrt{y}}{y+\sqrt{yz}+z}+\frac{z\sqrt{z}}{z+\sqrt{zx}+x}\)
Cho các số thực x,y,z lớn hơn hoặc bằng 1 thỏa mãn 2x^2 + 3y^2 + 4z^2 =21. Tìm giá trị nhỏ nhất của M = x+y+z
x,y,z lớn hơn hoặc bằng 0 x+y+z+xyz=4
Max P=xy+yz+zx
Cho x>0, y>0,z>0,xyz=1. CMR \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\) lớn hơn hoặc bằng 2