\(\frac{x^2-10x+25}{x^2-5x}=\frac{\left(x-5\right)^2}{x\left(x-5\right)}=\frac{x-5}{x}\) \(\left(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne5\end{cases}}\right)\)
Để \(\frac{x-5}{x}=0\Rightarrow x=5\) (Loại)
Vậy không có giá trị \(x\) nào thoả mãn để \(\frac{x^2-10x+25}{x^2-5x}=0\)