Cho a,b,c , (a+b+c) là các số thực khác 0 thỏa mãn các điều kiện:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính giá trị biểu thức A=a2013+b2013+c2013
Cho các số thực dương a,b,c thỏa mãn điều kiện \(a+b+c\le\frac{3}{2}\).Tìm giá trị nhỏ nhất của biểu thức \(M=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện a+b+c=1
Tìm giá trị lớn nhất của biểu thức P = \(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
cho a, b, c là ba số thực dương thỏa mãn điều kiện a+b+c=1. Tìm giá trị lớn nhất của biểu thức:
\(P=\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\)
1.a).cho a,b,clà các số thực dương thỏa mãn a+b+c=abc.chứng minh rằng:
\(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{c}+\sqrt{a}}\)
b) cho các số thực x khác 0 thỏa mãn điều kiện 2x+1=\(\left(\frac{1}{x}-x\right)\)\(\left(\frac{1}{x}+x\right)\)
Tính giá trị biểu thức P=\(\sqrt{x^8+21x+12}\)
Cho ba số thực dương a,b,c thỏa mãn điều kiện \(\frac{1}{a+2}+\frac{3}{b+4}\le\frac{c+1}{c+3}\) .Tìm giá trị nhỏ nhất của biểu thức Q=(a+1)(b+1)(c+1)
Cho a, b là 3 số thực dương thỏa mãn điều kiện ab + bc + ca = 3abc . Tìm giá trị lớn nhất của biểu thức :
\(P=\frac{1}{^{a^2+1}}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\)
trục căn thức ở mẫu của các biểu thức sau
a) \(A=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{2c}}\) trong đó a,b,c là các số dương thỏa mãn điều kiện c là trung bình nhân của 2 số là a,b
b) \(B=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)trong đó a,b,c,d là các số dương thỏa mãn điều kiện ab=cd và a+b khác c+d