\(1+\frac{1}{3}+\frac{1}{9}=\frac{9}{9}+\frac{3}{9}+\frac{1}{9}=\frac{13}{9}\)
Nếu ta cứ kéo dài mãi thì biểu thức này \(>\frac{13}{9}\)
\(A=1+\frac{1}{3}+\frac{1}{9}+....\)
\(A=\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+....+\frac{1}{3^n}\)
=> \(3A=3+\frac{1}{3^0}+\frac{1}{3^1}+....+\frac{1}{3^{n-1}}\)
=> \(3A-A=\left(3+\frac{1}{3^0}+\frac{1}{3^1}+....+\frac{1}{3^{n-1}}\right)-\left(\frac{1}{3^0}+\frac{1}{3^1}+....+\frac{1}{3^n}\right)\)
<=> \(2A=3-\frac{1}{3^n}=\frac{3^{n+1}-1}{3^n}\)
=> \(A=\frac{3^{n+1}-1}{2.3^n}\)(Với n thuộc N*)