Đặt \(x^{243}+x^{81}+x^{27}+x^9+x^3+x=\left(x^2-1\right)k+r=\left(x-1\right)\left(x+1\right)k+r\)
Nên r là số dư ; Thay x = 1 ta được :
\(1^{243}+1^{81}+1^{27}+1^9+1^3+1=\left(1-1\right)\left(1+1\right)k+r\)
\(\Leftrightarrow6=0.2.k+r\Leftrightarrow r=6\)
Vậy số dư là 6