Bth xác định `<=>2x^2+5 >= 0`
Vì `2x^2 >= 0 AA x<=>2x^2+5 >= 5 > 0 AA x`
`=>` Bth luôn xác định `AA x`
Bth xác định `<=>2x^2+5 >= 0`
Vì `2x^2 >= 0 AA x<=>2x^2+5 >= 5 > 0 AA x`
`=>` Bth luôn xác định `AA x`
Tìm `ĐKXĐ`:
\(\sqrt{\dfrac{-5}{6+x}}\)
\(\sqrt{\dfrac{-2}{6-x}}\)
\(\sqrt{\dfrac{-x+3}{-6}}\)
\(\sqrt{\dfrac{7x-1}{-9}}\)
\(\sqrt{\dfrac{x+2}{x^2+2x+1}}\)
\(\sqrt{\dfrac{x-2}{x^2-2x+4}}\)
\(\sqrt{2x^2+5x-3}-\sqrt{2x-1}=0\)
Tìm ĐKXĐ cho pt
1,Tìm đkxđ biểu thức \(\sqrt{3-2x}\)
2,giải phương trình :
a,\(\sqrt{3x-1}\)=2
b,\(\sqrt{x-2}\)+ \(\sqrt{4x-8}\)=6
tìm đkxđ \(\dfrac{\sqrt{x}}{\sqrt{8-2x}}\)
giải các hệ phương trình
\(\left\{{}\begin{matrix}\dfrac{2x+1}{4}-\dfrac{y-2}{3}=\dfrac{1}{12}\\\dfrac{x+5}{2}=\dfrac{y+7}{3}-4\end{matrix}\right.\)
b2.
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
B3. Tìm ĐKXĐ
\(\dfrac{1}{x\sqrt{x}+1}-\dfrac{2}{\sqrt{x}+1}\)
b4. so sánh A với 1
A=\(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
b5.tính
a,\(\sin47+2\sin38-\cos43-\cos52\)
b, \(C=\dfrac{2\sin^2x-1}{\sin x-\cos x}\)
tìm đkxđ của \(\dfrac{\sqrt{2x+1}}{2x-1}\)
Cho biểu thức \(A=\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
a, Tìm ĐKXĐ và rút gọn biểu thức A.
b, Tìm các giá trị của x để A < 1.
Tìm ĐKXĐ của \(\dfrac{1}{\sqrt{x-\sqrt{2x-1}}}\)
tìm điều kiện để các biểu thức sau có nghĩa ( tìm đkxđ)
1) \(\frac{1}{\sqrt{2x-1}}+\sqrt{5-x}\)
2) \(\sqrt{x-\frac{1}{x}}\)
3) \(\sqrt{2x-1}+\sqrt{4-x^2}\)
4) \(\sqrt{x^2-1}+\sqrt{9-x^2}\)
bài 1
a,tìm đkxđ của x để biểu thức
A=\(\sqrt{2x}+2\sqrt{x+5}\) xác định
b,rút gọn biểu thức B=\(\left(\sqrt{3-1^2}\right)+\dfrac{24-2\sqrt{3}}{\sqrt{2}-1}\)
bài 3 cho x ≥ 0,x≠1,x≠9 tìm x biết
\(\left(1-\dfrac{x+\sqrt{x}}{\sqrt{1+x}}\right).\left(\dfrac{1}{1-\sqrt{x}}+\dfrac{2}{\sqrt{x-3}}\right)-2\)