Tìm x hữu tỉ biết \(x-\sqrt{2018}\)và\(\frac{7}{x}+\sqrt{2018}\)đều là các số nguyên
CMR: \(F=\sqrt{\frac{1}{\left(x-y\right)^2}+\frac{1}{\left(y-z\right)^2}+\frac{1}{\left(z-x\right)^2}}\)
là một số hữu tỉ với x,y,z là đôi một số hữu tỉ khác nhau
Tìm x,y, \(\in\)N* thỏa mãn 2 điều kiện:
\(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ và (y+2)(4xz+6y-3) là số chính phương
tìm các số nguyên duowgn x,y,z thỏa mãn hai điều kiện sau \(x^2+y^2+z^2\)là số nguyên tố và \(\frac{x-y\sqrt{2019}}{y-z\sqrt{2019}}\)là số hữu tỉ
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời hai điều kiện sau \(\frac{x-y\sqrt{2017}}{y-z\sqrt{2017}}\)là số hữu tỉ và \(x^2+y^2+z^2\)là số nguyên tố
Tìm các số nguyên dương x,y,z thỏa mãn đồng thời 2 điều kiện sau
\(\frac{x-y\sqrt{2011}}{y-z\sqrt{2011}}\)là số hữu tỉ và \(^{x^2+y^2+z^2}\)là số nguyên tố
Cho x,y là số hữu tỉ thỏa man x3+y3=2x2y2 Chứng minh \(\sqrt{1-\frac{1}{xy}}\)là số hữu tỉ
Cho P(x)=x3+ax2+bx-1
1) Xác định số hữu tỉ a và b để \(x=\frac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)là nghiệm của P(x)
2) Với giá trị a,b tìm được hãy tìm các nghiệm còn lại của P(x)
chứng minh nếu \(x-\frac{1}{x}\) là số nguyên và x khác +-1 thì x và \(x+\frac{1}{x}\) là số vô tỉ . khi đó \(\left(x+\frac{1}{x}\right)^{2n}\)
và \(\left(x+\frac{1}{x}\right)^{2n+1}\) là số vô tỉ hay số hữu tỉ