Lời giải:
a.
$y=(2m+5)x+m+3, \forall m$
$\Leftrightarrow 2mx+5x+m+3-y=0, \forall m$
$\Leftrightarrow m(2x+1)+(5x+3-y)=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} 2x+1=0\\ 5x+3-y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{-1}{2}\\ y=\frac{1}{2}\end{matrix}\right.\)
Vậy đt luôn đi qua điểm $(\frac{-1}{2}, \frac{1}{2})$ với mọi $m$
b.
$y=m(x+2), \forall m$
$\Leftrightarrow m(x+2)-y=0, \forall m$
\(\Leftrightarrow \left\{\begin{matrix} x+2=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-2\\ y=0\end{matrix}\right.\)
Vậy đt luôn đi qua điểm $(-2,0)$ với mọi $m$.