1) Làm tính nhân: a) (3-2*x+4*x^2)*(1+x-2*x^2). b) (a^2+a*x+x^2)*(a^2-a*x+x^2)*(a-x). 2) Cho đa thức: A=19*x^2-11*x^3+9-20*x+2*x^4. B=1+x^2-4*x Tìm đa thức Q và R sao cho A=B*Q+R. 3) Dùng hằng đẳng thức để làm phép chia: a) (4*x^4+12*x^2*y^2+9*y^4):(2*x^2+3*y^2). b) ( 64*a^2*b^2-49*m^4*n^2):(8*a*b+7*m^2*n). c) (27*x^3-8*y^6):(3*x-2*y^2)
a) Rút gọn và tính giá trị của biểu thức M=(x+3)(x^2-3x+9)-(x^3+54-x) với x=7
b)Tìm a,b,c thỏa mãn đẳng thức : a^2-2a+b^2+4b+4c^2-4c+6=0
a)Rút gọn và tính giá trị biểu thức M=(x+3)(x2-3x+9)-(x3+54-x) với x=27
b)Tìm a,b,c thỏa mãn đẳng thức:a2-2a+b2+4b+4c2-4c+6=0
Tìm đa thức N thỏa mãn mỗi đẳng thức sau:
a) x + 1 N = x 2 − 2 x + 4 x 3 + 8 với x ≠ − 1 và x ≠ − 2
b) ( x − 3 ) N 3 + x = 2 x 3 − 8 x 2 − 6 x + 36 2 + x với x ≠ ± 3 và x ≠ − 2 .
cho 2 số a và b thỏa mãn đẳng thức a^3 + b^3 + 3(a^2 + b^2) + 4(a+b) +4 = 0
tính giá trị của biểu thức M = 2019(a+b)^2
Cho đẳng thức\(\frac{\left(x+3\right)A}{x-3}\) =\(\frac{\left(x-1\right)B}{x^2-9}\)với x khác +- 3.Tìm 1 cặp đa thức A và B thỏa mãn đẳng thức đã cho
Trong mỗi đẳng thức sau, hãy tìm đa thức M:
a) 3 x 2 − 2 x − 5 M = 3 x − 5 2 x − 3 với x ≠ − 1 và x ≠ 3 2 ;
b) 2 x 2 + 3 x − 2 x 2 − 4 = M x 2 − 4 x + 4 với x ≠ ± 2 .
Trong mỗi đẳng thức sau, hãy tìm đa thức M phù hợp:
a) 3 y 2 + 6 y ( y − 1 ) M = 3 y y − 1 với y ≠ − 2 và y ≠ 1 ;
b) − 2 a 2 + 4 ab + 2 b 2 a + b = M b 2 − a 2 với a ≠ ± b .
Cho 2 số a, b thỏa mãn đẳng thức a3 + b3 + 3( a2 + b2) + 4( a + b) + 4 = 0
Tính giá trị của biểu thức M = 2018( a + b)2